Pathogenesis of nocturnal enuresis

Søren Rittig, Prof., DMSc

Dept. of Pediatrics and Center for Child Incontinence,
Aarhus University Hospital
Aarhus, Denmark

Disclaimer:
• Teaching and research collaboration with Ferring
• CI in solifenacin and mirabegron studies (Astellas)
OUTLINE

✓ Pathogenesis of nocturnal enuresis

• Terminology
• The three factor model
 • Sleep – new understanding?
 • Reduced bladder capacity
 • Nocturnal polyuria
• Genetics
Nocturnal enuresis pathogenesis
- Simple model still holds water

Nocturnal enuresis is caused by a mismatch between nocturnal urine volume and nocturnal bladder capacity

+ Inability to awaken when this occurs
The role of sleep

- Are they “deep sleepers” ??
Nocturnal enuresis
- Conventional sleep studies

Nørgaard et al, 1989:
Sleep EEG is normal (manual scoring). Enuresis occurs in all sleep stages.

Hunsballe et al, 1997:
No difference in EEG by manual scoring. Tendency to more delta band energy (computer).

Neveus et al, 1998:
Enuresis occurs predominantly in nonREM sleep. No correlation between enuresis events and EEG.
Arousal and Nocturnal Enuresis

Kirk et al, 1996: Normal children are also unable to wake up when the bladder is overfilled (< 12 yrs).

Wolfish et al, 1998: 61% of normal children were unable to wake up to acoustic stimuli (120 dB).

Fewer enuretic children (9 vs. 39%) were able to wake up to acoustic stimuli.

Yeung et al, 2010: “Our results suggest an interaction between bladder overactivity and brain arousability” (“bladder–brain dialogue”).

Table 1. Sleep Architecture and the Cortical Arousal Index in Children with Enuresis and Normal Controls.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients with Nocturnal Enuresis (N=35)</th>
<th>Normal Controls (N=21)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (yr)</td>
<td>9.5</td>
<td>10.3</td>
<td>NS</td>
</tr>
<tr>
<td>Sleep stage (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>5</td>
<td><0.01</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>45</td>
<td>NS</td>
</tr>
<tr>
<td>Light (stages 1 and 2)</td>
<td>57</td>
<td>50</td>
<td><0.01</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>NS</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>23</td>
<td><0.05</td>
</tr>
<tr>
<td>Deep (stages 3 and 4)</td>
<td>26</td>
<td>30</td>
<td><0.05</td>
</tr>
<tr>
<td>Rapid eye movement</td>
<td>16</td>
<td>20</td>
<td><0.01</td>
</tr>
<tr>
<td>Cortical arousal index†</td>
<td>6.32</td>
<td>3.90</td>
<td><0.01</td>
</tr>
</tbody>
</table>

* NS denotes not significant.
† The cortical arousal index ranges from 1.12 to 12.48, with a higher score indicating more frequent cortical arousals.
Sleep and PLMS
- The new black?

Dhondt et al, J Urol, 2009:
Periodic Limb Movement during Sleep and increased cortical arousal is common in treatment resistant NE.

Dhondt et al, ICCS 2014:
PLMS is associated with reduced QoL
PLMS/Cortical arousal is associated with reduced daytime performance
6 months desmopressin tx in pts with NP increases daytime performance.

The role of sleep – a paradigm shift?

- Are they “light sleepers”?
- With poor sleep quality?
- With day-time consequences?
The role of the bladder

Reduced bladder capacity (MVV):

MVV < 65% of EBC

EBC = 30 x (age + 1) (ml)
NB: Is correct only if first morning voided volume is disregarded!!

<table>
<thead>
<tr>
<th>Age</th>
<th>Normal bladder capacity</th>
<th>Reduced Bladder capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 years</td>
<td>180 ml</td>
<td>< 117 ml</td>
</tr>
<tr>
<td>6 years</td>
<td>210 ml</td>
<td>< 136 ml</td>
</tr>
<tr>
<td>7 years</td>
<td>240 ml</td>
<td>< 156 ml</td>
</tr>
<tr>
<td>8 years</td>
<td>270 ml</td>
<td>< 175 ml</td>
</tr>
<tr>
<td>9 years</td>
<td>300 ml</td>
<td>< 195 ml</td>
</tr>
<tr>
<td>10 years</td>
<td>330 ml</td>
<td>< 214 ml</td>
</tr>
<tr>
<td>DAY</td>
<td>NIGHT</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>DAY 1</td>
<td>Cystoscopy Suprapubic cat.</td>
<td></td>
</tr>
<tr>
<td>DAY 2</td>
<td>Urodynamic investigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overnight monitoring</td>
<td></td>
</tr>
<tr>
<td>DAY 3</td>
<td>Overnight monitoring</td>
<td></td>
</tr>
<tr>
<td>DAY 4</td>
<td>Provocative tests cystometries</td>
<td></td>
</tr>
<tr>
<td>DAY 5</td>
<td>Urodynamic investigation</td>
<td></td>
</tr>
</tbody>
</table>

Nocturnal bladder function in enuresis

Jens Peter Norgaard, Doctoral thesis, AU, 1992
Nocturnal bladder function in enuresis

Only 2/32 had reproducible bladder instability

Significant correlation between enuresis volume and daytime bladder capacity

Enuresis episode could be provoked in any sleep stage
Daytime bladder function in enuresis

<table>
<thead>
<tr>
<th></th>
<th>Non (N=55)</th>
<th>Partial (N=15)</th>
<th>Full (N=10)</th>
<th>Anova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic. freq.</td>
<td>5.1 ± 1.5</td>
<td>5.2 ± 1.4</td>
<td>5.2 ± 1.4</td>
<td>N.S.</td>
</tr>
<tr>
<td>AVV</td>
<td>112 ± 4.7</td>
<td>131 ± 11</td>
<td>143 ± 12</td>
<td>p<0.05</td>
</tr>
<tr>
<td>Morn. mict</td>
<td>157 ± 77</td>
<td>259 ± 78</td>
<td>278 ± 79</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>MVV/age</td>
<td>0.69 ± 0.3</td>
<td>1.02 ± 0.4</td>
<td>1.00 ± 0.2</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

Case - Michael, 7 years
- a new enuresis subtype?

• Healthy, normal development. Familial history of enuresis.
• No daytime LUT symptoms.
• Phys ex: normal, Normal urinalysis.
• Desmopressin 240 mcg melt: no effect.

Bladder diary:
• MVV: 250 ml; (65% MVVage = 156 ml)
• No desmo: Nuvol: 320 ml (NP = 312 ml)
Michael on 240 mcg desmo melt

<table>
<thead>
<tr>
<th></th>
<th>Mandag</th>
<th>Tirsdag</th>
<th>Onsdag</th>
<th>Torsdag</th>
<th>Fredag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tør nat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>På toilet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Våd nat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sæt X</td>
<td>ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blevægt often</td>
<td></td>
<td>Blevægt morgen</td>
<td>Vandlading morgen</td>
<td>Blevægt often</td>
<td>Blevægt morgen</td>
</tr>
<tr>
<td>50 g</td>
<td>130 g</td>
<td>100 ml</td>
<td>50 g</td>
<td>200 g</td>
<td>100 ml</td>
</tr>
<tr>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>Udfyldes af lægen</td>
<td></td>
</tr>
<tr>
<td>Nat-urinvolumen = (c - b) + α + d</td>
<td>Nat-urinvolumen = (c - b) + α + d</td>
<td>Nat-urinvolumen = (c - b) + α + d</td>
<td>Nat-urinvolumen = (c - b) + α + d</td>
<td>Nat-urinvolumen = (c - b) + α + d</td>
<td></td>
</tr>
<tr>
<td>= 180 ml</td>
<td>= 250 ml</td>
<td>= 220 ml</td>
<td>= 160 ml</td>
<td>= 200 ml</td>
<td></td>
</tr>
</tbody>
</table>
Defect circadian bladder rhythm?
- normal day-time bladder capacity (MVV)
- isolated low nocturnal bladder capacity

Effect of reduced eNBC on desmopressin response

The role of nocturnal polyuria

Poulton, Lancet, 1952

Rittig et al, J Urol, 2010
Role of nocturnal polyuria
- definition

ICCS Consensus:
Definition based upon expected bladder capacity (ICCS, 2006):
\[\text{Nuvol} > 130\% \text{ of MVV}_{\text{age}} \]

Population based definition:
\[\text{Nuvol} = 20 \times (\text{age} + 9) \]

Nocturnal polyuria - mechanisms

- Genes
- Sleep, light activity, food
- Intrinsc circadian regulation

- AVP
- ANP
- Aldo
- AgII

- Hormones
- Renal factors

- Tubular reabsorption
- Urine concentration
- GFR
- Central blood volume
- Blood pressure

- Hemodynamic factors
- Renal factors
p-AVP during sleep

Conclusion:
Lower p-AVP levels during wet nights in patients with good response to dDAVP.

Rittig et al, J Urol, 2008
Sleep deprivation causes nocturnal polyuria

<table>
<thead>
<tr>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuresis (mL/kg/h)</td>
<td></td>
</tr>
<tr>
<td>U-osm (mOsm/kg)</td>
<td></td>
</tr>
<tr>
<td>E-Na (mmol/kg/h)</td>
<td></td>
</tr>
<tr>
<td>FE-Na(%)</td>
<td></td>
</tr>
</tbody>
</table>

- * denotes significant difference between day and night
Nocturnal polyuria - mechanisms

- Genes
- Sleep, light, activity, food
- Intrinsic circadian clock
- AVP
- AgII
- Aldo
- ANP
- Hormones
- Hemodynamic factors
- Blood pressure
- Central blood volume
- Urine concentration
- Renal factors
- Tubular reabsorption
- GFR
- Nocturnal polyuria

Central blood volume
Circadian regulation - could be a central pathogenic factor
Genetics aspects of enuresis
- Hunting for the enuresis gene
Genetic aspects of enuresis
- Linkage analysis

- Linkage to 4q, 8q, 12q, 13q, and 22q.

- Locus heterogeneity in nocturnal enuresis.

- More loci exists as families have been reported with no linkage in these regions.
Genetic aspects of enuresis
- Hunting for the enuresis gene
Take home messages

- Our understanding of NE pathogenesis is still developing...
- The role of deep sleep has been challenged.
- Circadian rhythm of bladder capacity is in focus (isolated low nocturnal bladder capacity).
- The increased understanding of pathogenesis has provided a basis for treatment
- Possible development of new treatments
Collaborators

Aarhus University Hospital
Søren Rittig
Jens Hunsballe
Henriette Schaumburg
Frank Schmidt
Anne Orredson
Thorsten B Mathiesen
Kostas Kamperis
Søren Hagstrøm
Birgitte Mahler
Charlotte Siggaard
Jane H. Christensen
Mia Faerch
Rene F. Andersen
Helene Kvistgaard
Wendy Bower
Casper Jessen
Luise Borch
Lene H Tauris
Marie Schrøder
Karen Alstrup
Britt Borg
Shivani Joshi
Iben Johnsson
Jane H. Knudsen
Troels M Jørgensen
Jens C Djurhuus

Research Unit for Molecular Medicine
Niels Gregersen

Institute of Human Genetics
University of Aarhus
Lars Bolund
Thomas Corydon

The water and salt research centre, University of Aarhus
Søren Nielsen
Jørgen Frøkiær

Institute of Human Genetics
University of Copenhagen
Hans Eiberg

Dept. of Pediatrics
Ghent University Hospital
Belgium
Johan vande Walle

Dept. of Pediatrics
Bratislava University Hospital
Slovakia
Laszlo Kovacs
Eva Radvanska

Dept. of Pediatric Urology
Hong Kong University
CK Yeung

Dept. of Endocrinology
Northwestern University
Chicago IL, USA
Gary L. Robertson

Dept. of Psychiatry
Saarland University Hospital
Germany
Alexander von Gontard